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Problem Set 6

1. Relativistic transformation of a particle’s po-
lar angle. Consider the usual Lorentz frames
S and S ′, with spatial origins coincident at
t = t′ = 0. As usual, frame S ′ moves in the x̂
or x̂′ direction with velocity βc with respect to
frame S. A particle is emitted by a radioactive
source that is at rest with respect to S ′. As seen
by an observer in S ′, the particle travels with
velocity β′c at an angle θ′ with respect to the
x̂′ direction. However, as seen by an observer
who is at rest with respect to the frame S, prove
that the particle makes a different angle θ with
respect to the x̂ direction, where

tan θ =
sin θ′

γ
(
cos θ′ + (β/β′)

) .

2. and 3. (double credit problem)
Violation of time-reversal invariance was discov-
ered in 1964 in the weak decay

K0
L → π+π− ,

where the K0
L and π± are quark-antiquark pairs

(including a strange quark in the K0
L case); a

kaon has ≈ 7
2 of a pion’s mass. In its own

rest frame, the (spin 0) kaon decays isotropi-
cally. Suppose that the kaons compose a finite
beam whose momentum per particle is 2mKc (≈
1 GeV/c). With respect to the beam direction,
find the laboratory angle θ at which the flux of
decay pions per unit solid angle, dN/dΩdt, is
infinite. [Hint: the answer is not θ = 90◦.]

4. Define the contravariant four-vectors

Aµ ≡ {V/c,A}
Jµ ≡ {cρ,J}
pµ ≡ {E/c,p}
kµ ≡ {ω/c,k}
∂µ ≡ {∂/c∂t,−∇} .

Use the convention that repeated Greek indices
are summed from 0 to 3. Employing primar-
ily contravariant four-vectors, but making use of

covariant four-vectors where appropriate, write
a manifestly Lorentz invariant equation that is
equivalent to
(a) the generalized de Broglie relation.
(b) conservation of electric charge.
(c) the Lorentz gauge condition.
(d) the wave equation, including sources, for the
electromagnetic potentials in Lorentz gauge.

5. An object aµ is a (contravariant) four-vector
if it transforms (between frames as defined in
Problem 1) according to

a′µ = Λµ
νaν ,

where Λ is the (symmetric) 4× 4 Lorentz trans-
formation matrix. (Conventionally, the super-
script labels the row and the subscript labels the
column, but this makes no difference for a sym-
metric matrix.) Covariant four-vectors instead
transform according to

a′
µ = (Λ−1)νµaν

(otherwise the scalar product aµaµ = a′
µa′µ

would not remain invariant for different Lorentz
frames). Consider now an (arbitrary) four-tensor
Hµν . In frame S, Hµν contracts with covariant
four-vector aν to yield contravariant four-vector
bµ, according to

bµ = Hµνaν .

In the frame S ′, requiring Hµν to satisfy the
transformation properties of a four-tensor, we
define H ′µν so that

b′µ = H ′µνa′
ν .

Prove that

H ′µν = Λµ
ρHρσΛν

σ .

This defines the Lorentz transformation property
of a four-tensor.



6. Consider the antisymmetric electromagnetic
field strength tensor

Fµν ≡ ∂µAν − ∂νAµ .

Prove that Fµν is a four-tensor, i.e. it transforms
according to the results of Problem 5.

7. Using the definitions of ∂µ and Aµ, show by
explicit calculation, element by element, that the
covariant electromagnetic field strength tensor is
equal to

F =




0 −E1/c −E2/c −E3/c
E1/c 0 −B3 B2

E2/c B3 0 −B1

E3/c −B2 B1 0


 .

(The sign of this result is opposite to that of
Griffiths; this is expected from his use of a met-
ric tensor with sign opposite to the standard.)

8. Prove that the equation

∂µFµν = µ0J
ν

is equivalent (in vacuum) to the two Maxwell
equations which involve sources. (The two
source-free Maxwell equations are already re-
quired to be true by the definition of Aµ.)


